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Abstract. Osmotically driven water flow, u (cm/s),
between two solutions of identical osmolarity, co
(300 mM in mammals), has a theoretical isotonic
maximum given by u = j/co, where j (moles/cm2/s)
is the rate of salt transport. In many experimental
studies, transport was found to be indistinguishable
from isotonic. The purpose of this work is to
investigate the conditions for u to approach isotonic.
A necessary condition is that the membrane salt/
water permeability ratio, e, must be small: typical
physiological values are e = 10)3 to 10)5, so e is
generally small but this is not sufficient to guarantee
near-isotonic transport. If we consider the simplest
model of two series membranes, which secrete a tear
or drop of sweat (i.e., there are no externally-im-
posed boundary conditions on the secretion), diffu-
sion is negligible and the predicted osmolarities are:
basal = co, intracellular � (1 + e)co, secretion � (1
+ 2e)co, and u � (1 ) 2e)j/co. Note that this model
is also appropriate when the transported solution is
experimentally collected. Thus, in the absence of
external boundary conditions, transport is experi-
mentally indistinguishable from isotonic. However,
if external boundary conditions set salt concentra-
tions to co on both sides of the epithelium, then fluid
transport depends on distributed osmotic gradients
in lateral spaces. If lateral spaces are too short and
wide, diffusion dominates convection, reduces os-
motic gradients and fluid flow is significantly less
than isotonic. Moreover, because apical and baso-
lateral membrane water fluxes are linked by the
intracellular osmolarity, water flow is maximum
when the total water permeability of basolateral
membranes equals that of apical membranes. In the
context of the renal proximal tubule, data suggest it
is transporting at near optimal conditions. Never-
theless, typical physiological values suggest the

newly filtered fluid is reabsorbed at a rate u � 0.86 j/
co, so a hypertonic solution is being reabsorbed. The
osmolarity of the filtrate cF (M) will therefore
diminish with distance from the site of filtration (the
glomerulus) until the solution being transported
is isotonic with the filtrate, u = j/cF.With this stea-
dy-state condition, the distributed model becomes
approximately equivalent to two membranes in ser-
ies. The osmolarities are now: cF � (1 ) 2e)j/co,
intracellular � (1 ) e)co, lateral spaces � co, and u
�(1 + 2e)j/co. The change in cF is predicted to
occur with a length constant of about 0.3 cm. Thus,
membrane transport tends to adjust transmembrane
osmotic gradients toward eco, which induces water
flow that is isotonic to within order e. These findings
provide a plausible hypothesis on how the proximal
tubule or other epithelia appear to transport an
isotonic solution.
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Introduction

The most widely accepted model of epithelial trans-
port is that salt is transported across the epithelium
by a series of active and passive mechanisms, and
water follows by osmosis (Whittembury & Reuss,
1992; Schultz, 2001). However, osmosis is not the
only theory of how tissues transport water. Some
recent reports have suggested the existence of trans-
membrane water pumps (Meinild et al., 1998; Zeu-
then et al., 2001; reviewed in Loo et al., 2002).
Electro-osmosis is another mechanism that probably
has some role in fluid movement (McLaughlin &
Mathias, 1985). Recently, Sanchez et al. (2002) and
Fischbarg and Diecke (2005) suggested fluid trans-
port by the corneal endothelium is driven by electro-
osmosis. Lastly, hydrostatic pressure is an essential
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part of water flow and its presence will alter osmotic
gradients (Mathias, 1985). A comprehensive model
that includes all of these factors would be complex
and unlikely to provide much insight on the role of
any particular factor. We therefore focus on osmosis,
since it always plays an important role in transport,
regardless of the presence of water pumps, electro-
osmosis or hydrostatic pressure. The goal is to
understand the subtleties of osmosis through inves-
tigation of a series of simple models with different
geometries and boundary conditions. Since most
experimental data suggest epithelia are capable of
near-isotonic transport, special attention will be given
to understanding how local osmosis might lead to
isotonic transport.

There has been a plethora of models of local
osmosis and fluid transport by epithelia, starting
with the three-compartment model of Curran and
Macintosh (1962). In general, these calculations
have all concluded that the transported fluid would
be measurably hypertonic, unless some ad hoc
assumptions were added to the model. For example,
to make the transport nearer to isotonic, Diamond
and Bossert (1967) located the site of solute trans-
port at the apical end of the channel. Sackin and
Boulpaep (1975) showed that if the basement
membrane had an appreciable salt reflection coeffi-
cient, transport would be nearer to isotonic. With
regard to isotonic transport, Ussing and Eskesen
(1989) state: ‘‘None of the hypotheses advanced in
the past seemed to explain the phenomenon con-
vincingly.’’ They suggested that solute would have
to be recirculated. This led Larsen et al. (2000) to
derive a solute recirculation model. However, a
perspective by Spring (2002) points out limitations
of the recirculation model. Fischbarg and Diecke
(2005) simply discarded local osmosis and modeled
transport driven entirely by electro-osmosis. Thus,
despite many years and many models, some impor-
tant concept seems to be missing. The trend has
been to make more complex models to explain the
experimental observation of isotonic transport,
whereas we have chosen to make simpler models to
insure we truly understand local osmosis.

The relevant features of the osmotic hypothesis
are illustrated in Fig. 1. Water and salt are thought
to cross the membrane via independent pathways.
Salt transport relies ultimately on the Na/K ATPase
as the source of energy, but it also involves sec-
ondary active transport processes and electro diffu-
sion of ions through membrane channel proteins.
These processes depend on intracellular ATP,
transmembrane voltage and Nernst potentials, hence
they are not significantly affected by the small con-
centration gradients that drive water flow. In what
follows, we will assume the transmembrane flux of
salt j (moles/cm2/s) is established by factors outside
of the scope of our analysis, so it enters the model

as a constant, which is uniform along the apical or
basolateral membranes, but constrained such that
apical and basolateral membrane salt fluxes always
balance. The transport of salt creates a transmem-
brane osmotic gradient Dc (M), which causes water
to follow by osmosis. Water traverses the membrane
primarily via the aquaporins, which are a class of
integral membrane proteins that form channels
permeable to water but not salt (reviewed in Verk-
man, 1989; van Os et al., 2000; King, Kozono &
Agre 2004;). The presence of aquaporins confers a
relatively high membrane water permeability P (cm/
s/M), which carries a water flow u (cm/s), where
u = P Dc. Moreover, whereas Dc is established by j,
it depends on u, since water flow convects solute
away and reduces Dc. For example, if P is doubled,
u will increase but it will not double. Indeed, as
P fi ¥, u will approach a limiting maximum value
as Dc fi 0. This limit can be deduced by consid-
ering the flux of salt to and from the membrane. As
Dc fi 0, diffusion becomes negligible and j is car-
ried by convection only, hence j fi uco. The
maximum limiting water flow is therefore:

u ¼ j=co isotonic limit. ð1Þ
Since this is the theoretical maximum rate of flow,
as argued by Ussing and Eskesen (1989), it cannot
be attained; however, it is possible that fluid trans-
port could be experimentally indistinguishable from
this limit. First, we need to define P fi ¥, which
has no real meaning without some reference. Since
u ¼ PDc � j=co, we can deduce that:

Dc

co
� j=co

Pco

Define:

e ¼ j=co
Pco

ð2Þ

The fundamental requirement is that P be suffi-
ciently large so that e is small, then the concentra-
tion gradient will be small. For a typical fluid-
transporting epithelium, a moderate value of P
would be 3.3 · 10)4 cm/s/M, and a fairly large value
of j would be 3 · 10)11 moles/cm2/s, suggesting that
e < 10)3 (Whittembury & Reuss, 1992). These
values of P and j refer to a unit area of membrane.
Because of extensive membrane folding, the water
permeability and solute flux per unit area of epi-
thelium will be 20- to 50-fold greater, but e depends
on the ratio, so its value is not affected by folding.
At the outset we can therefore deduce that all
solutions will be nearly isotonic, but a much more
detailed analysis is required to determine how clo-
sely u approaches its isotonic limit.

In what follows, the smallness of e will be used
to generate approximate analytic solutions of the
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transport equations. These perturbation solutions
are in the form of a series of terms of increasing
powers in e. The first, or order-zero term, is inde-
pendent of e, while the next order-one term is pro-
portional to e. In general, the first two terms of such
series are adequate to accurately describe the con-
centration gradients and fluid flow. This is verified
by comparison of the analytic expressions with more
exact computer-generated solutions for each model.
Segel, 1970, first used this particular perturbation
expansion to analyze the ‘‘standing gradient model’’
of Diamond and Bossert (1967). He derived analytic
expressions to describe local osmosis when salt
transport is localized to one end of a membrane
tube. The work presented here is an extension of the
original model of Diamond and Bossert and of the
analysis by Segel.

Results

As indicated in the Introduction, the models will
focus on local osmosis and not consider the effects
of hydrostatic pressure, electro osmosis, voltage
gradients in the lateral spaces or any sort of addi-
tional complications due to recirculation of salt
across basal membranes, as suggested by Neder-
gaard, etal., 1999. We will simply evaluate the con-
ditions in which local osmosis will lead to near
isotonic transport. For simplicity, the analysis will
consider only transcellular transport, so the apical
junctions are assumed to be impermeable to salt and
water.

A SIMPLE TWO-MEMBRANE MODEL

The model shown in Fig. 2 (first proposed by Curran,
1960; Curran & Mclntosh, 1962) treats an epithelium
as three compartments (basal, intracellular, and api-
cal), separated by two membranes (basolateral and
apical). Although this model may seem too simple,
we will subsequently show that more complex and
realistic models will often reduce to an equivalent of
this simple model. Moreover, it illustrates the extreme
sensitivity of local osmosis to the boundary condi-
tions. Lastly, it illustrates the degree of spatial uni-
formity of the intracellular concentration of solute, ci
(moles/cm3). In subsequent calculations, ci is assumed
to be uniform, as suggested by the results presented
here.

Figure 2A represents an epithelium secreting fluid
when the secretion is not subjected to external
boundary conditions (e.g., a tear or drop of sweat).
At the apical surface, previously secreted solution is
pushed away by newly secreted solution, so all of the
secreted solution has the same solute concentration,
cs (moles/cm3). Since there are no diffusion gradients
in the secretion, the flux of salt j (moles/cm2/s) is
carried away from the apical surface entirely by
convection (i.e., j = ucs), hence the concentration of
solute at the apical surface is cs = j/u. Note that this
boundary condition also applies to experimental sit-
uations where the transported solution (secretion or
absorption) is collected and its tonicity measured
(e.g., Diamond, 1964 Barfus & Schafer, 1984;). As
will be seen in these calculations, when transport
determines the osmolarity of the transported solu-
tion, transport is dramatically different from when
the osmolarity is maintained the same on both sides
of the epithelium (Fig. 2B). In Fig. 2B, both sides of
the epithelium are assumed to be washed with a well
stirred solution whose solute concentration is co,
hence the boundary condition on the apical secretion
is cs = co. Except for this difference in the apical
boundary condition, the transport equations
describing Fig. 2A or B are the same. In this simple
model, the flux of salt j and fluid u are both constants.
We assume the value of j is known, so it is the
independent variable whereas u is the dependent
variable to be determined. Within the cell layer, j is
carried by a combination of diffusion and convection:

jðdiffusionÞ ¼ �Di
dciðxÞ
dx

jðconvectionÞ ¼ uciðxÞ

j ¼ uciðxÞ � Di
dciðxÞ
dx

ð3Þ

Fluid follows the solute flux j due to osmotic gradi-
ents that are generated across apical and basolateral
membranes. Since the fluid entering the cells baso-
laterally must exit the cells apically, there are two
expressions for fluid flow:

Fig. 1. The main components of transmembrane osmosis. Bulk

solution is assumed to have osmolarity co, with possible local

gradients of order Dc. Salt is actively transported across the

membrane at a rate j and water follows by osmosis at a rate u

through an independent pathway, primarily via aquaporins. The

presence of aquaporins confers a specific membrane osmotic per-

meability P, so the rate of fluid transport is determined by

u = PDc.
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u ¼ PBLðcið0Þ � coÞ
u ¼ PAðcs � ciðhÞÞ

ð4Þ

The difference between the models in Fig. 2A vs B is
the value of cs

cs ¼
A

j=u cs ¼
B

co ð5Þ

For these models, isotonic transport is the limiting
situation where:

IsonaticTransport

u ¼ j=co

ciðxÞ ¼ co

cs ¼ co

jiðdiffusionÞ ¼ 0

To calculate how closely these models approach their
isotonic limit, it is useful to normalize the transport
variables with respect to their isotonic values. The
normalized parameters are:

y ¼ x=h

CiðyÞ ¼ ciðyÞ=co
Cs ¼ cs=co

U ¼ u=ðj=coÞ

ð6Þ

The normalized transport equation is given by:

1 ¼ UCiðyÞ � 1

eki

dCiðyÞ
dy

e ¼ j=co
PBLco

ki ¼ PBLco
Di=h

ð7Þ

The normalized boundary conditions are:

eU ¼ Cið0Þ � 1

aeU ¼ Cs � Cið1Þ
a ¼ PBL=PA

ð8Þ

And the difference between the models in Fig. 2A vs
B is:

A B
Cs ¼ 1=U Cs ¼ 1

ð9Þ

When these equations are solved, the nearness to
isotonic transport is determined by how closely U and
Ci approach unity. For this particular problem, one
can solve the equations exactly to obtain a nonlinear,
implicit relationship between U and Ci. These solu-
tions can be expanded in a Taylor series in powers of
e to obtain explicit expressions. Equivalently, one can
start with a perturbation expansion of U and Ci in
powers of e, which leads to a series of problems that
define the terms of the expansions. The perturbation

Fig. 2. A simple two-membrane model of epithelial transport. (A) Secretion of fluid without boundary conditions on the secretion. The

basolateral membranes are washed with a well-stirred solution of osmolarity co; the intracellular osmolarity Ci(X) is allowed to vary across

the epithelium, but the calculations suggest it is essentially constant because diffusion is very effective over short distances; the secreted

solution has osmolarity cs, which is determined by the membrane water permeability and the rate of salt transport, j. Since the flux of salt in

the secretion is carried entirely by convection, it is given by j = ucs. Hence the boundary condition on the osmolarity of the secretion is

cs = j/u for model A. (B) The same simple model of an epithelium, but now each side is washed with a well-stirred solution whose

osmolarity is co. Thus the difference in the two models is the boundary condition on the secretion, which is cs = co for model B.
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approach is illustrated by example in the Appendix.
Either approach leads to the approximate solutions
given in Eq. 10 The left-hand results labeled A refer
to Fig. 2A, whereas the right-hand results labeled B
refer to Fig. 2B

A B

Ci � 1 þ e Ci � 1 þ e
ki

1þ a þ ki

½1 � ð1 þ aÞy	
Cs � 1 þ eð1 þ aÞ Cs ¼ 1

U � 1 � eð1 þ aÞ U � ki

1 þ a þ ki

ð10Þ
These results are shown graphically in Fig. 2, using
the parameter values in Table 1. The parameter val-
ues were chosen as being typical of results reported in
a number of studies reviewed in Whittembury and
Reuss, 1992. These parameters refer to a unit area of
epithelium rather than a unit area of membrane,
hence P and j are increased by 36-fold over their per
unit area of membrane values to account for lateral
membrane area and apical membrane microvillae.

The analysis of Fig. 2A suggests the natural
steady-state condition for a transporting epithelium is
to generate a concentration gradient of eco across
each membrane, in which case, the flux of salt (j) is
carried by convection to within order (e), hence salt
concentrations are uniform to within order (e). In
Fig. 2A, we have modeled the epithelium as 2 mem-
branes in series, hence the overall concentration
gradient is 2eco, assuming PA = PBL (i.e., a = 1). In
general, the two sides may have different membrane
areas or specific water permeabilities, but there can be
only one mathematical e, hence the appearance of a
(Eq. 8). Physically, e is the ratio of salt to water
permeability, which for basolateral membranes is e
but for apical membranes is ae. Thus the concentra-
tion gradient across basolateral membranes is eco and
across apical membranes is aeco, giving the overall
concentration difference of (1 + a)eco (Eq. 10). The
implication is that fluids will always be within order e
of isotonic, and for fluid transporting epithelia, e is a
very small number (about 10)3 for cells of proximal
tubule or 10)5 for fiber cells of the lens).

The original experiments of Diamond, 1964,
were to collect the fluid transported by the gall
bladder and measure its osmolarity. To within
experimental error, the fluid appeared to be isotonic,
but that result can be entirely explained by the
model in Fig. 2A. The fact that the fluids on the two
sides of the epithelium appeared to have the same
osmolarity prompted Diamond and Bossest, 1967,
and others who followed their lead, to generate a
model that was more equivalent to Fig. 2B. Al-
though the model in Fig. 2B is obviously too simple,

it illustrates the extreme sensitivity of the system to
the boundary conditions. In model A, the apical
solution is within order e of co. This is physically
indistinguishable from co; however, if we mathe-
matically impose the condition that the apical
solution is precisely co, there is a dramatic reduction
in water flow: the flow in A is 99.8% isotonic
whereas in B it is 15% isotonic.

For the model in Fig. 2B, the membrane con-
centration gradients that generate osmotic flow are
diffusional gradients within the cell. These diffu-
sional gradients are small for two reasons: 1) cellular
dimensions are small (h � 10 lm) and diffusion is
very effective at maintaining even concentrations
over short distances; 2) the surface to volume ratio
of a cell is relatively small. For the lateral intercel-
lular space, distances can be significantly larger.
Meanderings of the lateral spaces of a single layered
epithelium increase membrane area by an order of
magnitude (Whittembury & Reuss, 1992), hence the
distance is increased by about 3-fold (l � 30 lm)
while the surface to volume ratio of the lateral
spaces is hundreds of times greater than that of the
cell. Thus, one must include the effects of lateral
spaces to properly analyze the situation pictured in
Fig. 2B. But is this situation relevant? While it is
probably not a relevant model for any experiment
that has been done, it is physiologically relevant. In
the proximal region of the renal proximal tubule,
the newly filtered luminal (apical) solution has
composition co while the peritubular capillaries
maintain the external (basal) solution at co. Thus, it
is of physiological relevance to assess the effects of
long, narrow intercellular spaces on the osmolarity
of transported solution.

A MEMBRANE TUBE

The model pictured in Fig. 3 is very similar to that
which generated the original computer simulations
of Diamond and Bossert, 1967, and the perturbation
analysis by Segel, 1970. The only difference is that,
in Fig. 3, solute transport is assumed to be uniform
along the lateral membranes, whereas Diamond and
Bossert, 1967, localized the solute transport to the
apical end of the tube. In the perturbation analysis
by Segel, 1970, the fraction of the tube that trans-
ported solute was allowed to be a variable, and if
that fraction is set to one, then the analysis pre-
sented here is identical to that in Segel. So this is not
really new, but it is an important step in dissecting
the various factors that are involved in local
osmosis.

The subscript e is used to emphasize that this
analysis is of extracellular fluxes along the lateral
spaces. Once again, the solute flux is carried by
convection plus diffusion.
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jeðxÞ ¼ ueðxÞceðxÞ � De
dceðxÞ

dx
ð11Þ

Basolateral membrane solute transport, jBL (moles/
cm2/s), is assumed to be uniform, and the apical
junctions are assumed to be closed to solute or water
transport, viz

djeðxÞ
dx

¼ 2

a
jBL

jeð0Þ ¼ 0

ð12Þ

One can integrate Eq. 12 to obtain another expres-
sion for je(x).

jeðxÞ ¼ 2l

a
jBL

x

l
ð13Þ

These results lead to the following equations and
boundary conditions.

2l

a
jBL

x

l
¼ ueðxÞceðxÞ � De

dceðxÞ
dx

dueðxÞ
dx

¼ PBLðceðxÞ � coÞ

ce ðlÞ ¼ co ; ueð0Þ ¼ 0

ð14Þ

In the isotonic limit, the results would be:

ceðxÞ ¼ co

ueðxÞ ¼ j

co

x

l

where

j ¼ 2l

a
jBL

u ¼ j

co

ð15Þ

Again, the variables are normalized with respect to
their isotonic limit

y ¼ x=l

CeðyÞ ¼ ceðyÞ=co
UeðyÞ ¼ ueðyÞ=ðj=coÞ

ð16Þ

The resulting, normalized equations are

y ¼ UeðyÞCeðyÞ � 1

eke

dCeðyÞ
dy

e
dUeðyÞ
dy

¼ CeðyÞ � 1

Ceð1Þ ¼ 1; Ueð0Þ ¼ 0

where

e ¼ jBL=co
PBLco

ke ¼ 2l

a

PBLco
De=l

ð17Þ

The approximate solutions below were obtained
using a perturbation expansion in e. In this model,
the order-zero solution for fluid flow deviates signif-
icantly from isotonic (see below), hence we have not
bothered to include the order-one term, which does
not affect the conclusions discussed below.

CeðyÞ � 1 þ e 1 � cosh
ffiffiffiffiffiffiffiffi
ke y

p
cosh

ffiffiffiffiffiffiffiffi
ke y

p
 !

UeðyÞ � y � 1ffiffiffiffiffi
ke

p sinh
ffiffiffiffiffiffiffiffi
ke y

p
cosh

ffiffiffiffiffiffi
ke

p
ð18Þ

The normalized fluid flow exiting the tube is given by

U ¼ 1 � 1ffiffiffiffiffi
ke

p tanh
ffiffiffiffiffi
ke

p
ð19Þ

Using the parameter values in Table 2,
ffiffiffiffiffi
ke

p
=

13.3 and tanh
ffiffiffiffiffi
ke

p
= 1.0, hence U � 0.92. Assuming

co = 300 mM, the osmolarity of the transported
solution, j/u = 326 mM. Although this is only 8.7%
above co, the 26 mM difference would be easily de-
tected if one could design an appropriate experiment
to measure j/u. Note that in either the previous ‘‘two-
membrane model’’ or in this ‘‘simple membrane
tube’’ model, the parameter k must be large for
transport to approach isotonic. In both models, ki,e
depends on the ratio of the membrane water perme-
ability, coP (cm/s), to the solute permeability of the
appropriate length of fluid, Di/h or De/l (cm/s). The
tube model can produce much more nearly isotonic
transport because ke also depends on the surface to
volume ratio times the length of tube, 2 l/a = 6000.

The parameter values in Table 2 were chosen for
a typical single-layered epithelium like the proximal
tubule. There are also double-layered epithelia like
the ciliary epithelium, and multilayered epithelia like
the corneal endothelium or the lens. Although the
tube diameter 2a is typical of the width of the inter-
cellular spaces in all of these tissues, the layering of
cells can greatly increase l. In this particular model,
for values for l ‡ 300 lm, transport will be greater

Table 1. Parameter values for Figure 2

co 300 · 10)6 moles/cm3

Di 10)5 cm2/s

H 10 · 10)4 cm

J 1.0 · 10)9 moles/cm2/s*

P 12 (cm/s) /(moles/cm3)*

a 1

e 10)3

ki 0.36

*Based on per unit area of epithelial surface.
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than 99% isotonic. To understand this effect of
length, consider ce in Fig. 3. Along most of the length
of the tube, the luminal concentration ce(x) is
approximately (1 + e)co and transmembrane water
flow is nearly isotonic, but near the basal opening
diffusion becomes important and the boundary con-
dition that ce(l ) = co causes a deviation from the
linear (isotonic) flow. Although the deviation at the
mouth of the tube will always be present, as l becomes
large, this deviation becomes a smaller fraction of the
total transmembrane flow, leading to the conclusion
that long clefts produce near isotonic transport.
Surprisingly, this simple conclusion does not hold up
when one generates a more realistic model that in-
cludes a cytoplasmic compartment in which the
osmolarity is determined such that apical and baso-
lateral water flows are equal.

A CELLULAR MODEL

The model in Fig. 4 assumes that most of the baso-
lateral membrane area is within the cleft, hence basal
flow is neglected. The dimension r (cm) can be chosen
such that the ratio of apical to basolateral membrane
areas is appropriate for the tissue of interest. In the
proximal tubule, this ratio is near unity, so the value
of r is determined from pr2 = 2pal Using parameter
values in Table 2, the value of r for the proximal
tubule would be about 0.8lm. This rather small ra-
dius is because we are treating clefts of width 2a as if
they were a tube of radius a, and a tube has much less
membrane area than a cleft. The major new factor is
the intracellular concentration ci, which is determined
from the transport equations such that apical and
basolateral water flows are equal, as they obviously
must be in a transporting epithelium at steady state.
Based on the analysis of Fig. 2, we assume ci is uni-
form, but not necessarily the same as co, as it was in
the situation analyzed in Fig. 3. Although the
geometry is contrived to simplify analysis, it should
be congruent with the geometry of a real epithelium
and provide intuition on the physics of physiological
fluid transport.

Since the transmembrane solute flux, jBL, is as-
sumed to be uniform along the lateral membranes,

Eqs. 11–13 are valid for Fig. 4 as well as Fig. 3.
However, the fluid flow equations will differ. Viz

2l

a
jBL

x

l
¼ ueðxÞceðxÞ � De

dceðxÞ
dx

dueðxÞ
dx

¼ PBLðceðxÞ � coÞ

ce ðlÞ ¼ co ; ueð0Þ ¼ 0

uA ¼ PA ðci � coÞ

ð20aÞ

Fig. 3. A tube of transporting membrane immersed in a solution of

osmolarity co. This model has been used to represent the lateral

intercellular spaces of a transporting epithelium (Diamond &

Bossert, 1967). (A) The geometric and transport properties of the

tube. The transmembrane salt flux, jBL, is assumed to be uniform

along the lateral membrane. This leads to a longitudinal flux je(x)

(moles/cm2/s) that increases linearly with distance from the apical

junction (x = 0), which is assumed to be impermeable to solute or

fluid. Local osmotic gradients ce(x) (moles/cm3) generate trans-

membrane water flow uBL(x) (cm/s) and cumulative longitudinal

water flow ue(x) (cm/s). The emerging solution has osmolarity j/u,

where u = ue(l) and j = 2pal jBL. At the end of the tube, ce(l)= co
The transport equations are derived in the text, where approximate

solutions are presented. (B) Graphical representations of the

solutions to the transport equations. The normalized concentration

gradient and water flow are graphed. The calculated values of the

concentration of solute along the majority of the tube and just at

the end of the tube are indicated on the graph.

Table 2. Parameter values for Figures 3 and 4

a 100 · 10)8cm

co 300 · 1 0)6 moles/cm3

De 10)5cm2/s

jA = jBL 3 · 10)11 moles/cm2/s

l 30 · 10)4 cm

PA = PBL 0.33 (cm/s) /(moles/cm3)

a 1

e 10)3

ke 178
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And balance between apical and basolateral flows
requires

u ¼ r2

a2
uA ¼ ueðlÞ

j ¼ r2

a2
jA ¼ 2l

a
jBL

ð20bÞ

The normalization with respect to isotonic transport
is the same as in Eq. 16 with the addition that
UA = UA/(jA/co). The definitions of ke and e are the
same as in Eq. 17. However, because of the cellular
compartment of normalized osmolarity Ci = ci/co,
the transport equations are now given by:

y ¼ UeðyÞCeðyÞ � 1

eke

dCeðyÞ
dy

e
dUeðyÞ
dy

¼ CeðyÞ � Ci

aeUa ¼ Ci � 1

Ceð1Þ ¼ 1; Ueð0Þ ¼ 0 Ueð1Þ ¼ Ua

where

a ¼ 2alPBL

r2PA

ð21Þ

The parameter a once again represents the ratio
of total basolateral membrane water permeability to
total apical membrane water permeability, so it de-
pends on both the specific water permeability of each
membrane and the length of cleft relative to the area
of apical membrane. The solutions to these equations
are in some ways similar to those for a membrane
tube, but there are significant differences that were
missed in the analyses of Diamond and Bossert, 1967,
or Segel, 1970. The perturbation solutions to Eq. 21
predict the emerging flow velocity, U = Ue(1) = Ua,
is given by:

U �
1 � 1ffiffiffiffi

ke

p tanh
ffiffiffiffiffi
ke

p

1 þ affiffiffiffi
ke

p tanh
ffiffiffiffiffi
ke

p ð22Þ

The concentrations are given by:

CeðyÞ � 1 þ eð1 � UÞ cosh
ffiffiffiffiffi
ke

p
� cosh

ffiffiffiffiffiffiffi
key

p
sinh

ffiffiffiffiffi
ke

p

Ci � 1þ eaU ð23Þ
And the flow along the tube is:

UeðyÞ � y � ð1 � UÞ sinh
ffiffiffiffiffi
ke

p
y

sinh
ffiffiffiffiffi
ke

p ð24Þ

Based on parameter values in Table 2, the
emerging flow is 86% isotonic, which is somewhat less

than for a simple tube. The reason for the reduction is
that ci, has to be higher than co in order to pull water
across apical membranes, but ce fi co at the end of
the tube, hence the transmembrane osmotic gradient
actually reverses direction and some fluid moves back
into the cell. Given the approximate nature of this
analysis, the difference between 86% and 93% iso-
tonic is not significant; however, the physical reason
for the difference has interesting implications.

Consider water flow (Eq. 22) when the basolat-
eral membrane water permeability increases: the re-

Fig. 4. A cellular model of epithelial transport. (A) The geometric

and transport properties of the cellular transport model. The

properties of the lateral intercellular spaces are the same as de-

scribed in Fig.3. The cellular dimension r (cm) is chosen so that the

area of apical membrane relative to basolateral membrane is

appropriate for the tissue of interest (see text). The new feature of

this model is the osmolarity of the intracellular compartment, ci
(moles/cm3), which is determined such that apical and basolateral

membrane water fluxes are the same. In addition, apical and ba-

solateral membrane solute fluxes are constrained to be the same,

implying pr2jA = 2pal jBL. The transport equations are derived in

the text, where approximate solutions are presented. (B) Graphical

representations of the solutions to the transport equations. The

normalized concentration gradient and water flow are graphed.

The calculated values of the concentration of solute along the

majority of the tube and just at the end of the tube are indicated on

the graph.
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sult is completely counter-intuitive. Indeed, in the
limit that PBL fi ¥, one can see from Eq. 22 that u
fi 0, which implies that increasing water permeability
can decrease water flow. To understand this apparent
anomaly, consider the limit PA fi ¥. In this case the
only change is that a fi 0, and inspection of Eq. 22
indicates that flow slightly increases to that predicted
by the model of a membrane tube (Eq. 19). This is
easily understood: as the apical membrane water
permeability becomes large, the concentration of
water across apical membranes approaches equilib-
rium and the concentration of solute in the cell ap-
proaches co, which is the physical situation analyzed
for a membrane tube. Water flow is then generated
entirely by standing osmotic gradients within the
tube. In the situation that PBL fi ¥, the concentra-
tion of water within the cell and the tube approach
equilibrium, standing osmotic gradients in the tube
approach zero, so the concentration of solute goes to
co in both compartments, but this also eliminates
osmotic gradients across the apical membranes and
water flow goes to zero. The behaviors of u and ci are
shown in Fig. 5, in which PA is fixed at its value in
Table 2 while PBL is normalized to PA, then the
normalized value is varied and the values of u and ci
are calculated. The water flow is maximum when
apical and basolateral water permeabilities are equal
(Fig. 5A), which is the condition where ci – co is also
maximum (Fig. 5B). When the basolateral membrane
water permeability decreases relative to the apical
membrane water permeability, basolateral water flow
becomes rate limiting and total flow decreases.
Whereas when the basolateral permeability increases
relative to apical, apical water flow becomes rate
limiting and total flow also decreases. Interestingly,
based on parameter values from the proximal tubule
(Whittembury & Reuss, 1992), that epithelium is
working near the optimum where total apical and
basolateral membrane water permeabilities are equal.

Another way for the total basolateral membrane
water permeability to increase is for the length of the
lateral spaces, l, to increase as in layered epithelia.
For the cellular model, total salt transport across
basolateral and apical membranes has to be the same,
so as l increases, either jBL must decrease or jA must
increase. For the calculations in Fig. 6A, we chose to
keep jA constant and decrease jBL in proportion to
1/l. As previously described for a simple membrane
tube, as l fi ¥ the end of the tube effects become
negligible and transport becomes isotonic. However,
for the more realistic cellular model, there are two
competing effects: 1) the end of tube effects become
negligible causing flow to increase; 2) the total water
permeability of the basolateral membranes increases
relative to apical, causing flow to be rate-limited by
the apical membrane. The net effect is for flow to
increase, but it does not reach its isotonic limit, rather
it reaches a maximum of 92% isotonic. This behavior

is illustrated in Fig. 6A. Figure 6A shows that the
normalized flow velocity has essentially reached its
limiting value for values of l ‡ 300 lm.

The discussion above suggests that if PBL de-
creases as l increases, such that balance between
apical and basolateral membrane water permeabili-
ties is maintained, then long clefts would indeed lead
to isotonic transport. To demonstrate this, Fig. 6B
graphs the behavior of Eq. 22 when l increases but
PBL decreases as 1/l. In this situation, for values of l
‡ 300 lm, transport is more than 95% isotonic,
which is greater than the maximum of 92% isotonic

Fig. 5. The effect of increasing basolateral membrane water per-

meability (PBL), with all else constant. The calculations are based

on the cellular model shown in Fig. 4. (A) The rate of fluid

transport as a function of PBL. Fluid transport is maximum when

total apical and basolateral water permeabilities are equal:

pr2PA = 2pal PBL. (B) The osmotic gradient across apical mem-

branes as a function of PBL. As PBL decreases, basolateral water

flow becomes rate limiting and the concentration of solute in the

cell decreases to reduce apical flow and maintain balance. As PBL

increases, the concentration of solute in the lateral spaces and the

cell approach co, causing the apical transmembrane osmotic gra-

dient to decrease and apical flow becomes rate limiting.
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in Fig. 6A, so decreasing PBL leads to increased
water flow. For l ‡ 300 lm, flow is more than 99%
isotonic, so long clefts do lead to isotonic transport,
but the effect depends on the square root of l, so the
isotonic limit requires very long clefts. In the lens

where cleft lengths are quite long, anywhere from
0.1 cm in a small mouse lens to 1 cm in a cow lens,
the water permeability of the membranes lining the
clefts (fiber cell membranes) is indeed much smaller
than in most epithelia. Varadaraj et al., 1999, re-
ported values in the rabbit lens range from 0.058
(cm/s)/(mole/cm3) for peripheral fibers to 0.015 (cm/
s)/(mole/cm3) for interior fibers, whereas surface
epithelial cells of the lens have a water permeability
of about 0.25 (cm/s)/(mole/cm3). Thus, contrary to
intuition, these relatively low values of fiber cell
membrane water permeability should actually gen-
erate more water flow, which should be near to
isotonic.

THE RENAL PROXIMAL TUBULE

The newly-filtered solution exiting the glomerulus
will have the osmolarity of plasma, co, and the
basal solution will be maintained at co by the
peritubular capillaries. Thus the above analysis
suggests that the proximal region of the proximal
tubule will be reabsorbing solution that is 86%
isotonic, hence the concentration of the reabsorbed
solution is about 1.16co, which means the concen-
tration of the filtrate, cf, is decreasing with distance
along the tubule. As cf decreases, the rate of
reabsorbing fluid will also change until the con-
centration of the reabsorbed fluid is the same as cf.
Thereafter all concentrations will remain constant.
The first step in analyzing this situation is to
consider an epithelium with different concentrations
on the apical vs basal sides. Assume the peritubular
capillaries maintain the basal concentration at co,
whereas the concentration of the filtrate, cf, on the
apical side is arbitrary.

y ¼ UeðyÞCeðyÞ � 1

eke

dCeðyÞ
dy

e
dUeðyÞ
dy

¼ CeðyÞ � Ci

aeUa ¼ Ci � Cf

Ceð1Þ ¼ 1; Ueð0Þ ¼ 0 Ueð1Þ ¼ Ua

where

a ¼ 2alPBL

r2PA

ð25Þ

For a perturbation approach to work, we have to
assume that Cf = Cf/co can be expanded in a series

Cf ¼ C
ð0Þ
f þ eCð1Þ

f þ e2Cð2Þ
f þ . . .

When this series is substituded into Eq.25, Cf
(0) = 1

and the solutions to Eq. 25 can be written in terms
of the unspecified value of Cf

(1). The concentrations
are given by

Fig. 6. The effect of increasing the length of lateral spaces as in

layered epithelia or the lens. To maintain equality of salt transport,

we set pr2jA = 2pal jBL by reducing jBL in proportion to 1/l, with jA
constant. (A) Fluid transport as a function of l when apical and

basolateral membrane water permeabilities are maintained con-

stant. Because the boundary condition effect at the mouth of the

tube reduces net transport (see text describing Fig. 4A), the longer

the cleft the less important this effect and transport increases.

However, because increasing cleft length also has the effect of

increasing total basolateral membrane water permeability relative

to apical, eventually apical water transport becomes rate limiting

and water transport never exceeds 92% isotonic. (B) Fluid trans-

port as a function of l when apical and basolateral membrane water

permeabilities are maintained equal by reducing PBL as 1/l. In this

situation, the mouth of the tube effect becomes negligible at long l,

but apical flow does not become rate limiting, hence water trans-

port approaches its isotonic limit.
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Cf � 1 þ eCð1Þ
f

Cf � 1 þ e
C

ð1Þ
f þ a � affiffiffiffi

ke
p tanh

ffiffiffiffiffi
ke

p

1 þ affiffiffiffi
ke

p tanh
ffiffiffiffiffi
ke

p

CeðyÞ � 1 þ e
C

ð1Þ
f þ 1 þ a

1 þ affiffiffiffi
ke

p tanh
ffiffiffiffiffi
ke

p 1 � cosh
ffiffiffiffiffiffiffi
key

p
cosh

ffiffiffiffiffi
ke

p
" #

ð26Þ
And the fluid flow is

UeðyÞ � y � C
ð1Þ
f þ 1 þ a

1 þ affiffiffiffi
ke

p tanh
ffiffiffiffiffi
ke

p sinh
ffiffiffiffiffiffiffi
key

p
ffiffiffiffiffi
ke

p
cosh

ffiffiffiffiffi
ke

p

U � 1 � C
ð1Þ
f þ 1 þ a

1 þ affiffiffiffi
ke

p tanh
ffiffiffiffiffi
ke

p 1ffiffiffiffiffi
ke

p tanh
ffiffiffiffiffi
ke

p
ð27Þ

There are two ways to specify Cf
(1). First, consider

steady state. The concentration of the filtrate, cf,
will stop changing when the concentration of the
reabsorbed solution equals the concentration of the
filtrate. Thus the steady-state condition is cf = jA/
uA, or in normalized parameters

UACf ¼ 1 ð28Þ
When the constraint in Eq. 28 is added to Eq. 25,
the solutions are:

Cf � 1 � eð1 þ aÞ
Ci � 1 � e

Ce � 1

UeðyÞ � y þ eð1 þ aÞ sinh
ffiffiffiffiffiffiffi
key

p
sinh

ffiffiffiffiffi
ke

p

U � 1 þ eð1 þ aÞ

ð29Þ

The solutions in Equation 29 neglect terms of O(e2)
and higher. Remarkably, these solutions are
equivalent to the solutions for simple secretion gi-
ven in Eq. 10A, except fluid flow is in the opposite
direction, hence the transmembrane gradients are
reversed. Since the reabsorbed solution is isotonic
with cf, the value of cf is now constant. The
remaining question is: What is the distance from
the glomerulus at which transport attains this
steady state? To answer this question, the transport
equations for flow along the lumen of the proximal
tubule need to be derived and solved, which is the
second way to specify Cf

(1), now as a function of
distance from the glomerulus.

We assume that within the lumen of the tubule
solute is carried by the water flow uf (cm/s) and that z
(cm) is the distance along the tubule from the glo-
merulus. Further, we assume apical salt transport, jA
(moles/cm2/s), is constant along the tubule, then the

solute flow equation within the lumen is given by

dufðzÞcfðzÞ
dz

¼ � SA

VT
jA

ufðzÞcfðzÞ � u0co ¼ � SA

VT
jAz

ð30Þ

Where SA/VT (cm)1) is the surface area of apical
membrane per unit volume of the tubule lumen and
u0 (cm/s) is the rate of filtration by the glomerulus at
z = 0 (see Table 3 and Fig. 7A). Equation 30 is only
valid until uf fi 0, but as shown later, this is a large
distance, on the order of 20 cm. The rate of decrease
in uf is the rate of fluid reabsorbtion.

� dufðzÞ
dz

¼ SA

VT
PAðciðzÞ � cfðzÞÞ ð31Þ

If uf is normalized to its initial value such that
Uf = uf/u0 and other parameters are normalized as
before, the dimensionless equations are:

UfðZÞCfðZÞ ¼ 1� aeZ

dUfðZÞ
dZ

¼ CfðZÞ � CiðZÞ

Cfð0Þ ¼ 1; Ufð0Þ ¼ 1

where

Z ¼
c0

SA

VT
PA

u0
z

ð32Þ

If the expression for Ci and Cf from Eq. 26 are
substituted into Eq. 32, we can solve for the
unspecified Cf

(1). The results are:

Define T ¼ 1ffiffiffiffiffi
ke

p tanh
ffiffiffiffiffi
ke

p
then

CfðZÞ � 1� eð1þ aÞð1� e�aTZ=ð1þaTÞÞ
UfðZÞ � 1� e½ð1þ aÞð1� e�aTZ=ð1þaTÞÞ � aZ	

ð33Þ

Thus Cf(Z) exponentially approaches its steady-state
value of 1-e(1 + a) with a length constant, k (cm),
where

k ¼ ð1þ aTÞu0
aT

= co
SA

VT
PA

� �
ð34Þ

Tables 2 and 3 give the parameter values used to
calculate k = 0.3 cm. As shown in Fig. 7B, flow will
attain steady state at about 3 length constants from
the glomerulus, or at about 0.9 cm, where Eq. 29

Table 3. Parameter values for Figure 7 and related text

SA/VT 4.8 · 104cm)1

T 0.075

u0 0.1 cm/s

uf fi 0 z fi 20 cm
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becomes valid. Because we have assumed salt trans-
port is constant along the tubule, once steady state is
reached, the longitudinal flow velocity declines line-
arly with distance. Based on Eq. 33 it will eventually
become negative, but that is obviously physically
impossible, so Eq. 33 can only be applied up to the
distance where all the filtered fluid has been reab-
sorbed and flow goes to zero. This occurs at Z � 1/ae,
which implies z � 20 cm, given the parameter values
in Tables 2 and 3. This is much longer than the length
of the proximal tubule, so the analysis is not physi-
cally unreasonable as a description of the initial salt
and water transport in the proximal tubule.

EXPERIMENTAL MEASUREMENTS OF ISOTONIC

TRANSPORT

In the previous section we derived the remarkable
result that, when the filtrate (apical solution) was at
its natural steady-state concentration, the distributed
model of standing gradients in the lateral intercel-
lular spaces collapsed back to a simple lumped
(three-compartment) model similar to that first
proposed by Curran and MacIntosh (1962). In all
experimental determinations of isotonic transport,

the transported solution has been collected (e.g.,
Diamond, 1964; Barfus & Schafer, 1984), hence it
will have its natural steady-state composition. The
obvious implication is that experimental protocols
may create a situation in which a simple lumped
model is appropriate and transport is within order e
of isotonic. To test this hypothesis, we reevaluate
the ‘‘Cellular Model’’ given by Eq. 21 with a change
in boundary conditions such that the basal solution
has the composition of the absorbate. The new
boundary condition is ce(l) = j/u, which when nor-
malized gives the condition

Ueð1ÞCeð1Þ ¼ 1 ð35Þ
Thus we no longer impose the condition that
Ce(1) = 1, but use Eq. 35 instead. Imposition of this
boundary condition does indeed cause the distrib-
uted model to collapse to a lumped three-compart-
ment model. In fact, imposing the boundary
condition in Eq. 35 implies that Ce(y) is a constant
given by Ce ¼ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4eð1þ aÞ

p
Þ=2, and

Ue(y) = y/Ce, Ci = 1 + ea/Ce. The e-expansions of
the exact solutions are:

CeðyÞ � 1þ eð1þ aÞ
Ci � 1þ ea

UeðyÞ � yð1� eaÞ
U � 1� ea

If we assume a = 1, then apical and basolateral
membranes each have seen a transmembrane os-
motic gradient of eco, and the absorbate is isotonic
to within order e. The absorbate is therefore isotonic
to within about one part in one thousand, and
experimenters would consider this to be isotonic.
The most remarkable feature is the change in the
physics of fluid transport. The lateral intercellular
spaces are no longer needed to generate the osmotic
gradients that drive fluid transport; instead, the
differential equations for distributed transport could
be replaced with a simple three-compartment system
in which apical transmembrane fluid flow is given by
PAeco, basolateral transmembrane fluid flow is
PBLeco, and the osmolarities co, (1 + e)co and (1 +
2e)co in the apical, intracellular and basolateral
compartments respectively. This is the absorption
equivalent of the secretion model in Fig. 2A.

Discussion

The central theme of this analysis is that fluid-trans-
porting epithelia have a natural steady state where
each membrane has an osmotic gradient of eco, water
flow is within order e of isotonic, and osmotic gra-
dients are spatially uniform to within order e. If the
transported fluid is significantly different from iso-

Fig. 7. Fluid and salt reabsorption in the renal proximal tubule.

(A) The geometric and transport properties of the proximal tubule.

The new filtrate cf= co (moles/cm3) is generated by the glomerulus

at z = 0. As the filtrate flows along the lumen of the tubule, salt is

transported out of the tubule across apical membranes at a rate jA
(moles/cm2/s) and water follows at a rate uA (cm/s). The osmolarity

of the transported solution, jA/uA (moles/cm3), is initially co/0.86

(Eq. 22 and related text), implying cf is decreasing with increasing

distance from the glomerulus. The transport equations are derived

in the text, where approximate solutions are presented. (B) A

graphical representation of the solution for cf as a function of

distance from the glomerulus. Based on parameter values in Ta-

ble 2, e = 10)3 and the total water permeabilities of apical and

basolateral membranes are the same, hence a = 1. Initially

cf = co = 300 mM, but it exponentially declines to its steady-state

value of (1)(1+a)e)co = 399.4 mM with a length constant k = 0.3

cm. At steady state, the osmolarities of the transported solution

and the filtrate are the same: cf = jA/uA.
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tonic, then the effect of transport will be to adjust
gradients until the above condition holds. When this
state is reached, standing osmotic gradients in the
lateral spaces are negligible.

In the experiments that have suggested isotonic
transport, the transported solution has been collected
and its osmolarity measured (e.g., Diamond, 1964;
Barfus & Schafer, 1984), hence the epithelia were in
this natural steady state. The actual osmolarity was
probably order e hypertonic, but since e is generally
less than 10)3, the deviation from isotonic could not
be detected. Based on these experiments, models of
transporting epithelia have assumed the solution on
each side of the epithelium had a salt concentration of
exactly co (Diamond & Bossert, 1967; Segel, 1970),
Because the membrane water permeability is rela-
tively large, the models are exquisitely sensitive to the
assumed boundary concentrations and the effect of
the difference between co and (1+2e)co is rather
dramatic, as demonstrated in Fig. 2.

Another problem with the early models (Dia-
mond & Bossert, 1967; Segel, 1970) was that they
focused on standing gradients in lateral spaces and
did not consider the cellular compartment. Later
models (Sackin & Boulpaep, 1975; Weinstein &
Stephenson, 1981) did include the cellular compart-
ment, but these were complicated numerical models,
which do not provide as much insight as an approx-
imate analytic solution (Segel, 1970). The cellular
osmolarity links apical and basolateral water flows
and significantly affects conclusions on the effects of
basolateral membrane water permeability as well as
cleft length. The models presented here predict that
fluid flow is maximum when total water permeabili-
ties of apical and basolateral membranes are mat-
ched. In the proximal tubule, where apical and
basolateral membrane areas are similar and both
membranes have similar water permeabilities, fluid
transport appears to be maximized. Whereas in the
lens, where the cleft lengths are exceptionally long,
hence the area of lateral membrane is much larger
than that of surface cell membrane (reviewed in
Mathias et al., 1997), the lateral membrane water
permeability is much less than that of surface cells
(Varadaraj et al., 1999), once again generating near
maximum fluid flow.

Our model calculations on the renal proximal
tubule suggest the filtrate will reach an equilibrium
concentration that is slightly hypotonic (about 0.6
mM using parameter values in Tables 1–3) relative to
the basal solution, which is maintained at the same
concentration as the solution in the peritubular cap-
illaries. Green and Giebisch (1984) found that when
they perfused the tubules and peritubular capillaries
with the same solution, the tubular solution did in-
deed reach an equilibrium concentration that was
slightly hypotonic to that of the capillaries. They
estimated they could reliably detect differences of

about 1 mM and the differences they found were 1.7
mM or 3.9 mM, depending on the rate of perfusion. In
our model, the difference in osmolarity is given by
2eco. Based on a range of experimental values, we
estimated e � 10)3. For our model to explain their
data, the value of e would have to be 2.9 · 10)3 for
the 1.7 mM difference or 6.7 · 10)3 for the 3.9 mM
difference. Since e depends on the ratio of j/P, given
the range of values for j and P reviewed in
Whittembury and Reuss (1992), their experiments are
in very good agreement with the predictions of our
modeling.

LIMITATIONS OF MODELS

At the outset, we stated that we would focus on
local osmosis and not include voltage gradients,
hydrostatic pressure or electro-osmosis, all of which
must be present based on simple thermodynamics.
Although the analysis of hydrostatic pressure is not
presented here, we have looked to see if its inclusion
would affect any of the above conclusions. We
found that hydrostatic pressure slightly reduced the
maximum flow in the models presented in either
Fig. 3 or 4, but it did not alter any of the above
conclusions. McLaughlin and Mathias, 1985,
examined the role of electro-osmosis and concluded
that it could substitute for hydrostatic pressure in
driving longitudinal fluid flow along the clefts, thus
altering the pressure gradient, but not affecting the
conclusions on local osmosis. Although these are
issues for future analysis, at this stage, we do not
think that they alter any of the general conclusions
on the role of local osmosis.

Models of epithelial fluid transport are exqui-
sitely sensitive to the assumed boundary conditions.
This sensitivity does indeed represent a significant
limitation to analyses of fluid transport. There are
unstirred layers just adjacent to membranes, and
these depend on unknown factors such as the
structure of the membrane surface and the degree of
stirring. Small deviations in osmolarity in these
layers can alter boundary conditions and may sig-
nificantly affect fluid transport. Thus, it is difficult to
derive a quantitatively accurate model of a real
epithelium. Our goal in deriving and approximately
solving the models presented here was to obtain
insight into the physics of fluid transport, particu-
larly with regard to the role of local osmosis and
isotonic transport.

Others have suggested the existence of water
pumps (Meinild et al., 1998; Zeuthen et al., 2001),
and while these may exist, they are not necessary to
explain data on isotonic transport. Similarly, models
that invoke more complex patterns of flow such as
recirculation (Nedergaard et al., 1999) or circulating
currents driving fluid transport through electro-
osmosis (Sanchez et al., 2002; Fischbarg & Diecke,
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2005) may be correct, but they are not necessary to
explain the data on isotonic transport. Simple physics
tells us local osmosis will always be present, regard-
less of whatever other mechanism is postulated, and
based on the calculations here, we conclude that local
osmosis is sufficient to generate near isotonic trans-
port.

This work was supported by the National Eye Institute, grant

EY06391.

Appendix

In the text, we have presented results from pertur-
bation expansions of the equations describing Fig. 2,
3, 4 and 7. For each of these models, the perturbation
approach is quite similar, so in this Appendix we will
go through the expansion for Fig. 2A to demonstrate
the approach.

The concentrations and fluid flow in Equations
7–9 are expanded in a series in e.

Ci ¼ C
ð0Þ
i þ eCð1Þ

i þ . . .

Cs ¼ Cð0Þ
s þ eCð1Þ

s þ . . .

U ¼ Uð0Þ þ e Uð1Þ þ . . .

ðA1Þ

Equation A1 is inserted into Eqs. 7–9 and terms of
like powers in e are collected to define a series of
problems to be solved. For the order (0) problem, we
obtain

dC
ð0Þ
i ðyÞ
dy

¼ 0

1� C
ð0Þ
i ð0Þ ¼ 0

Cð0Þ
s � C

ð0Þ
i ¼ 1

Uð0ÞCð0Þ
s ¼ 1

ðA2Þ

The solutions to Eq. A2 are:

C
ð0Þ
i ¼ 1

Cð0Þ
s ¼ 1

Uð0ÞCð0Þ
s ¼ 1

ðA3Þ

The order (1) problems are:

dC
ð0Þ
i ðyÞ
dy

¼ kiðUð0ÞC
ð0Þ
i � 1Þ

C
ð1Þ
i ð0Þ ¼ Uð0Þ

Cð1Þ
s � C

ð1Þ
i ð0Þ ¼ aUð0Þ

Uð0ÞCð1Þ
s þ Uð1ÞCð1Þ

s ¼ 0

ðA4Þ

If the order (0) solutions in Eq. A3 are inserted into
Eq. A4, the results are:

C
ð1Þ
i ¼ 1

Cð1Þ
s ¼ 1þ a

Uð1Þ ¼ �ð1þ aÞ
ðA5Þ

Thus to within order (e2) the solutions are given by:

Ci ¼ 1þ e þ Oðe2Þ
Cs ¼ 1þ eð1þ aÞ þ Oðe2Þ
U ¼ 1� eð1þ aÞ þ Oðe2Þ

ðA6Þ

In this simple model, the concentrations and flows are
constant to within order (e2). In the more compli-
cated models of extracellular clefts, the values of
Ce
(1)(y) and Ue

(0)(y) depend on y. Nevertheless, the
more complicated models are analyzed in the same
manner, so the expansions will not be presented.
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